点击查看原图

阮银兰 正高级 (ylruan111@163.com)    

c7(中国)官网c7(中国)官网首页    

光纤生物传感;拉曼检测;空芯光纤应用;大数据分析

个人简介

     

       阮银兰,女,1969年2月生,c7(中国)官网c7(中国)官网首页特聘教授,博士,博士生导师。主要从事微结构光纤和光谱生化检测研究及应用产业化开发,主持或参与澳大利亚政府基金项目4项,南澳大利亚州,大学和工业界项目9项,获得2008年澳大利亚博士后人才计划和2019年珠海市留学生创新计划支持。现担任Scientific Reports 期刊编辑委员会委员,Biosensors 期刊客座编辑,亚太光纤传感器学术会议技术委员会委员(2016,2018,2019),2017第二届光纤光子工业安全传感会议技术委员会委员,为2018年美国西部光子会议OPTO分会专题组织者及主席等。2005年获得国家留学基金委的国家自费留学生优秀奖及澳大利亚教育部的长江奋进奖。现发表学术期刊和会议论文110余篇,发明专利4项,文章累计引用1596,H指数因子18 (Scopus)。

 

教育背景

2001.05-2005.08 澳大利亚国立大学物理科学与工程博士

1993.09-1996.06 华中科技大学光电工程硕士

1987.09-1991.06 华中科技大学固体电子学学士  

 

工作经历

2020.05-              c7(中国)官网c7(中国)官网首页电子和自动化学院;

2005.08-2020.05 澳大利亚阿德莱德大学光子和先进传感研究所 (Institute of Photonics and Advanced Sensing, University of Adelaide, Australia)

1996.07-2001.05 武汉邮电科学研究院固体器件研究所(武汉光迅科技有限公司)

1991.07-1993.08 湖北襄樊磁带厂

主要荣誉
  1. 国家自费留学生优秀奖,国家留学基金委
  2. 澳大利亚教育部的长江奋进奖

 

学术活动
  1. Scientific Reports 期刊编辑委员会委员,Biosensors 期刊客座编辑;
  2. 亚太光纤传感器学术会议技术委员会委员(2016,2018,2019);
  3. 2017第二届光纤光子工业安全传感会议技术委员会委员。

 

教学信息

招生信

       招收博士研究生1-2名/年,硕士研究生4-5名/年,理工科专业,注重培养学生光子学与生物医学的跨学科研究能力的培养,提供良好的学习和科研环境,有参与工业界项目及出国访问的机会。 创新研究,写作能力,演讲能力和领导才能多方位培养,满足现代社会对人才的需求。

 

主要论文
  1. B. Du, D. Yang, Y. Ruan, P. Jia, H. Ebendorff-Heidepriem, Compact plasmonic fiber tip for sensitive and fast humidity and human breath monitoring, Optics Letter, 2020(45), 985-988.
  2. S. Ruan, D. P. McMeekin, R. Fan, N. A. Webster, H. Ebendorff-Heidepriem, Y. B. Cheng, J. Lu, Y. Ruan*, C. R. McNeill, Raman Spectroscopy of Formamidinium-Based Lead Halide Perovskite Single Crystals. he Journal of Physical Chemistry C, 2020, 2265-2272.
  3. B. Du, Y. Ruan*, Ly T. T., P. Jia, Q. Sun, Q. Feng, D. Yang, H. Ebendorff-Heidepriem, MoS2-enhanced epoxy-based plasmonic fiber-optic sensor for selective and sensitive detection of methanol. Sensors and Actuators B: Chemical, 2020, 305:127513.
  4. X. Pan, J. Zhao, G. Qian, X. Zhang, Y. Ruan, A. Abell, H. Ebendorff-Heidepriem, Mechanistic insight into the non-hydrolytic sol–gel process of tellurite glass films to attain a high transmission. RSC Advances, 2020, 2404-15.
  5. X. Tan, Y. Ruan, J. Zhong, etc., Effects of nitrogen on interspecific competition between two cell-size cyanobacteria:micrcystis aeruginosa and synechococcus sp., Harmful Algae, 2019(89), 101661.
  6. S. Ruan, R. Fang, N. Pai, J. Lu, NA. Webster, Y. Ruan, YB. Cheng, CR. McNeill, Incorporation of γ-butyrolactone (GBL) dramatically lowers the phase transition temperature of formamidinium-based metal halide perovskites. Chemical Communications, 2019(78), 11743-6.
  7. S. Ruan,  M. Surmiak,  Y. Ruan,  D. P. McMeekinH. Ebendorff-HeidepriemY. Cheng,  J. Lu and  C. R. McNeill, Light induced degradation in mixed-halide perovskites, Journal of Materials Chemistry C, 2019(30), 9326-34.
  8. B. Du, Y. Yang, Y. Zhang, P. Jia, H. Ebendorff-Heidepriem, Y. Ruan* and D. Yang, Enhancement of extraordinary optical transmission through coupling between metal nanohole and nanoparticle arrays, Journal of Physics D:Applied Physics, 2019(27), 275201.
  9. Ying-Shuang Mei(梅盈爽) , Cheng-Ke Chen(陈成克) , Mei-Yan Jiang(蒋梅燕) , Xiao Li(李晓) , Yin-Lan Ruan(阮银兰) , and Xiao-Jun Hu(胡晓君), Photoluminescence of SiV centers in CVD diamond particles with specific crystallographic planes, Chin. Phys. B Vol. 28, No. 1 (2019) 016101.

2018

  1. H. Ji, Y. Ruan, H. Ebendorff-Heidepriem, S. A. Vahid, T. Monro, A six-strut suspended core fiber for cylindrical vector mode generation and propagation. Optics Express. 2018 Nov 26, 26(24):32037-47.
  2. X. Luo, A. H. M. Al-Antaki, D. P. Harvey, Y. Ruan, S. He, W. Zhang and C. L. Raston, Vortex fluidic mediated synthesis of macroporous bovine serum albumin-based microspheres, ACS Applied Materials & Interfaces, 2018, 10 (32), pp 27224–27232.
  3. Z. Yang, Y. Mei Y, C. Chen, Y. Ruan, X. Hu, Synthesis of strong SiV photoluminescent diamond particles on silica optical fiber by chemical vapor deposition. Chinese Physics B. 2018 Mar 27(3):038101.
  4. S. Ruan, J. Lu, N. Pai, H. Ebendorff-Heidepriem, Y. B. Cheng, Y. Ruan* and C. R. McNeill*,An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite, Journal of Materials Chemistry C, 2018, 6988-95.
  5. L. Ding, Y. Ruan, T. Li, J. Huang, SC. Warren-Smith, H. Ebendorff-Heidepriem, TM. Monro, Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots. Sensors and Actuators B: Chemical. 2018, 273, pp 9-17.
  6. N. Riesen, X. Pan, K. Badek, Y. Ruan, T. M. Monro, J. Zhao, H. Ebendorff-Heidepriem and Hans Riesen, “Towards rewritable multilevel optical data storage in single nanocrystals,” Optics Express, 26, 12266-12276 (2018).
  7. S. Ruan, H. Ebendorff-Heidepriem and, Y. Ruan*, “Optical fiber turn-on sensor for the detection of mercury based on immobilized fluorophore,” Measurement 121C (2018) pp. 122-126.
  8. F. Gao, Y. Wang, L. Xu, Z. Feng, Q. Wu, B. Zhang, J. Liu, J. Tang, M. Tang, H. Liu, S. Fu, Y. Ruan, H. Ebendorff-Heidepriem, and D. Liu,“Light-controllable fiber interferometer utilizing photoexcitation dynamics in colloidal quantum dot,” Optics express, 2018, 26(4):3903-14.
  9. Y. Ruan, D. A. Simpson, J. Jeske, H. Ebendorff-heidepriem, D. W. M. Lau, H. Ji, B. C. Johnson, T. Ohshima, S. Afshar V., L. Hollenberg,2,5, A. D. Greentree, T. M. Monro, and Brant C. Gibson, “Magnetically sensitive nanodiamond-doped tellurite glass fibers,” Scientific reports. 2018 Jan 19, 8(1):1268.

Before 2017

  1. X. He X, J. Fang, Y. Ruan, X. Wang, Y. Sun, N. Wu, Z. Zhao, Y. Chang, N. Ning, H. Guo, L. Huang, Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review, Food chemistry, 2017.
  2. Y. JiangT. He,  Y. Chen,  Y. RuanY. Zhou,  B. Z. Tang,  J. Qin  and  Y. Tang, “Quantitative evaluation and in vivo visualization of mercury ion bioaccumulation in rotifers by novel aggregation-induced emission fluorogen nanoparticles,” Environmental Science: Nano, 11, 2186-2192, 2017.
  3. W. Qiao, S. Gao, T. Lei, H. Ji, Y. Ruan, Z. Xie, C. Yang, X. Yuan, "Transmission of orbital angular momentum modes in grapefruit-type microstructure fibre," Chinese Journal of Lasers, 44, 0406002, 2016.
  4. Y. Ruan, L. Ding, H. Ebendorff-Heidepriem, T. Monro et al, “Reduced graphene oxide for conductive material integrated to optical fibers,” Scientific Reports, 6, 21682, 2016.
  5. H. Ji, Y. Ruan, S. Afshar and T. Monro, “Suspended Core Fibers for the Transmission of Cylindrical Vector Modes,” Journal of Lightwave Technology 34(24), 5620-5626, 2016.
  6. S. Ruan, Y. Chen, P. Zhang, X. Pan, C. Fang, A. Qin, H. Ebendorff-Heidepriem, B. Z. Tang, Y. Tang and Y. Ruan*, “Online remote monitoring of explosives by optical fibres,” RSC Advances, 6(105), 103324-103327, 2016.
  7. M. Han, M. Chen, H. Ebendorff-Heidepriem, C. Fang, A. Qin, H. Zhang, B. Z. Tang, Y. Tang and Y. Ruan*, “An optical fibre sensor for remotely detecting water traces in organic solvents,” RSC Advances, 6(85), 82186-90, 2016.
  8. Y. Ruan*, B. C. Gibson, D. W. M. Lau, A. D. Greentree, H. Ji, H. Ebendorff-Heidepriem, B. C. Johnson, T. Ohshima and T. M. Monro, “Atom-photon coupling from nitrogen-vacancy centers embedded in tellurite microspheres,” Scientific Reports, 5, 11486, 2015.
  9. C. Fang, Y. Xie, M. R. Johnston, Y. Ruan, B. Z. Tang, Q. Peng, and Y. Tang. "SERS and NMR Studies of Typical Aggregation-induced Emission Molecules." The Journal of Physical Chemistry A. 2015 Jul 2;119(29):8049-54.
  10. Y. Ruan*, J. Hong, B. Johnson, O. Takeshi, A. Greentree, B. Gibson, T. Monro and H. Ebendorff-Heidepriem, “Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers,” Optical Materials Express 5, 73-87(2015).
  11. H. Ebendorff-Heidepriem, Y. Ruan, H. Ji, A. Greentree, B. Gibson, and T. Monro, "Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass,” Optical Materials Express 4, 2608-2620(2014).
  12. Y. Ruan*, K. Boyd, H. Ji, A. Francois, H. Ebendorff-Heidepriem, J. Munch and T. M. Monro. "Tellurite microspheres for nanoparticle sensing and novel light sources," Optics Express 22, 11995-12006(2014).
  13. X. Zhu, S. Li, Y. Du, Y. Han, W. Zhang, Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar and T. M. Monro. "High stability supercontinuum generation in lead silicate SF57 photonic crystal fibers," Chinese Physics B 22, no. 1 (2013): 014215.
  14. Y. Ruan*, S. Afshar, and T. Monro, “Efficient excitation of surface plasmons in metal nanorods using large longitudinal component of high index nano fibers,” Optics Express, 19(14), 13464-13479(2011).
  15. Y. Ruan*, S. Afshar, and T. Monro, “Light enhancement within nanoholes in high index nanowires,” IEEE Photonics Journal, 3, 130-139(2011).
  16. Y. Ruan*, H. Ebendorff-Heidepriem, S. Afshar and T. M. Monro, “Light enhancement within nanoholes in nanostructured optical fibers,” Optics Express, 18(25), 26018-26026(2010).
  17. Y. Ruan*, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendoff-Heidepriem and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensor,” Optics Express, 16(22), pp:18514-18523(2008).
  18. S. V. Afshar, Y. Ruan*, S. C. Warren-Smith, and T. Monro, “Enhanced fluorescence sensing using microstructured Optical fibers; a comparison of forward and backwards collection modes, ” Optics Letters, 33(13), 1473-1475(2008).
  19. D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. Lee and B. J. Eggleton, Chalcogenide glass photonic crystals, Photonics and Nanostructures-Fundamentals and Applications, 6(1), 3-11(2008).
  20. Y. Ruan*, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Optics Express, 15(26), 17819-17826 (2007).
  21. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomlienovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. Lee, “Microfluid photonic crystal double heterostructures,” Applied Physics Letters, 91(12), 121107, 2007.
  22. Y. Ruan*, M. Kim, Y. Lee, B. Luther-Davies, A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Applied Physics Letters, 90(7), 071102(2007).
  23. M. Lee, C. Grillet, C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Optics Express, 15(3), 1277-1285(2007).
  24. V. G. Taeed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE Journal of Selected Topics in Quantum Electronics, 12(3),360-370(2006).
  25. M. Shokooh-Saremi, V. G. Ta'eed, Neil J. Baker, Ian C. M. Littler, David J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “High performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer: experiment and modeling,” Journal of the Optical Society of America B, 23(7), 1323-1331(2006).
  26. Y. Ruan*, B. Luther-Davies, W. Li, A. Rode, V. Kolev, S. Madden, “Large phase shift in As2S3 waveguides for all-optical processing devices,” Optics Letters, 30(19),2605-2607 (2005).
  27. V. G. Taeed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Optics Letters, 30(21), 2900-2902(2005).
  28. M. Shokooh-Saremi, V. G. Taeed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-Strong and well-apodized Bragg gratings in chalcogenide rib waveguides, ” Electronics Letters, 41(13), 738-739(2005).

 

学术著作
科研项目
  1. 新型拉曼检测平台的开发,消除背景荧光影响及提高探测灵敏度;
  2. 空芯光纤荧光和拉曼检测及其应用;
  3. 局域表面等离子体及生物医学POCT和高通量检测;
  4. 拉曼光谱生化过程监控;
  5. 天然产物成份分析;
  6. 新型核酸扩增仪开发;
  7. 新型生化检测光电平台开发。

 

知识产权

四篇发明专利

联系信息

邮箱:ylruan111@163.com

常用链接